

The Aldol Condensation

an Aldol!

A Quick Review from Tuesday

Lithium diisopropylamide (LDA) Enolates generated from esters and LDA can be alkylated. CH₃CH₂CHCOCH₃ CH₃CH₂CHCOCH₃ CH₃CH₂I CH₂CH₃ (92%)

 Two moles of ethyl acetate condense to give ethyl 3-oxobutanoate or ... ethyl acetoacetate aka acetoacetic ester

A versatile synthesis of β-ketoesters and <u>symmetrically</u> substituted acetones

Alkylation of Acetoacetic Ester gives unsymmetrically substituted acetone

Ketone Synthesis

Let's work another example together

Malonic Ester Synthesis $\frac{CH_{3}CH_{2}OCCCOCH_{2}CH_{3}}{CH_{3}(CH_{2})_{8}CH_{2}}$ 1. NaOH, H₂O 2. H+ 3. heat, -CO₂O CH₃(CH₂)₈CH₂CHCOH CH₃ Versatile Synthesis of Carboxylic acids Chemistry 328N

Apply Malonic Ester Synthesis

Write the structure of the malonic ester derivative which would yield this acid and the conditions required to run the reaction

The Aldol Condensation
 The product of an aldol condensation is

 a β-hydroxyaldehyde...nucleophilic acyl substitution is not possibe here....why??

Loss of water!

 Aldol products are easily dehydrated so the major product is an α,β-unsaturated aldehyde or ketone

"E₂ like" Elimination

OH

Chemistry 328N

ЭH

 H_2O

A Note about Aldol Reactions

aldol reactions are reversible and, particularly for ketones, there is often little aldol present at equilibrium. K_{eq} for dehydration is generally large and, if reaction conditions bring about dehydration, good yields of product can be obtained

It takes special efforts to isolate an Aldol...the product is generally the a,b -unsaturated aldehyde or ketone

What are the starting materials that lead to these producs via the Aldol condensation

Crossed Aldol Reactions

 In a "crossed aldol" reaction, one kind of molecule provides the enolate anion and another kind provides the carbonyl group

The Crossed Aldol Reaction

Crossed Aldol Reactions

Crossed aldol reactions only work if:

- one of the reactants has no α -hydrogen and, therefore, cannot form an enolate anion and
- the other reactant has a very reactive carbonyl group, namely an aldehyde

Look...no a-hydrogens.... so no enolate anions!!

Chemistry 328N

Let's discuss a plan for actually running a crossed aldol reaction

Does the addition sequence matter??

What goes into the pot first, second and third?

The Signature Page

Claisen Condensation: β -ketoesters **Dieckmann:** Cyclic β -ketoesters Acetoacetic ester synthesis: decorated acetones Malonic ester synthesis: decorated acetic acids **Aldol:** α , β -unsaturated aldehydes and ketones Grignard Reaction: Alcohols..., etc. Wittig:

From what??

Aldol reactions of ketones

 the equilibrium constant for aldol addition reactions of ketones is usually unfavorable but can be driven by dehydration

$$\begin{array}{cccc} OH & O & H \\ I & I \\ CH_3CCH_2CCH_3 & \longrightarrow \\ CH_3 & CH_3 \end{array} \xrightarrow{OH^-} & CH_3C = C CCH_3 \\ CH_3 & CH_3 & CH_3 \end{array}$$

Aldol Reactions

 Intramolecular aldol reactions (when the enolate anion and the carbonyl acceptor are in the same molecule) are most successful for formation of five- and sixmembered rings

Intramolecular Aldol Condensation

 ketones give very good yields of aldol condensation products when the reaction is intramolecular and driven by dehydration

Chemistry 328N

Enolate Anions

- When a ketone has two different α-hydrogens, is formation of the enolate anion regio-selective?
- The answer depends on experimental conditions

Kinetic Control - with slight excess of LDA

"fastest" but least stable

Thermodynamic Control

With slight excess of ketone

Slow but most Stable

Kinetic Control

 When a reaction is under kinetic control, the composition of the product mixture is determined by the <u>relative rates</u> of formation of each product

Thermodynamic Control

 When a reaction is under thermodynamic control, the composition of the product mixture is determined by the <u>relative stabilities</u> of each product

Which position is "thermodynamic" ??? Why??

Michael Reaction • Michael reaction: conjugate addition of an enolate **Arthur Michael** anion to an nyl compound!! • Following a - in the first on of malonic ester - in the seco of acetoacetic ester • An exceller yl compounds

Michael Reaction

Michael Reaction

Chemistry 328N

Retro-synthesis of 2,6-Heptadione

Always gives a 1,5-dicarbonyl product

Michael Addition

• The Michael reaction is a useful method for forming carbon-carbon bonds....1,5 dicarbonyls

Michael Addition

 It is also useful in that the product of the reaction can undergo an intramolecular aldol condensation to form a sixmembered ring. One such application is called the Robinson annulation.

 This reaction enabled the first synthesis of steroids

The Robinson Annelation: 1. Michael addition

Robinson annelation: 2. aldol condensation

not isolated; dehydrates under reaction conditions

